Nuclear Physics Summer School August 2002

Aneesh Manohar

UC SAN DIEGO

A new exact symmetry for baryons as $N_c o\infty$

- A $SU(6)_c$ spin-flavor symmetry that connects the six states $u \uparrow$, $u \downarrow$, $d \uparrow$, $d \downarrow$, $s \uparrow$, $s \downarrow$.
- Baryons form an irrreducible representation of the spin-flavor algebra.
- Relates octet N, Λ, Σ, Ξ and decuplet $\Delta, \Sigma^*, \Xi^*, \Omega$.

Can compute $1/N_c$ corrections in a systematic expansion, and the expansion is useful for $N_c=3$

- $\blacksquare 1/N_c$ corrections can be classified by their spin-flavor transformation properties
- Relations obtained to various orders in $1/N_c$. $1/N_c = 1/3$ factors evident in the experimental data.
- $1/N_c$ corrections comparable in size to SU(3) breaking corrections due to m_s

- Provides a deeper understanding of the success of quark models.
- Many results obtained in the nonrelativistic quark model, bag model, or Skyrme model, can be proven in QCD to order $1/N_c$ or $1/N_c^2$.
- $= SU(6)_c$ is the underlying symmetry that relates quark models to each other and to QCD.

Tells you how to consistently apply chiral perturbation theory to baryons

- lacksquare N_c and Δ states have to be treated together
- Cancellations in chiral loops
- Form of SU(3) symmetry breaking due to m_s is constrained by the $1/N_c$ expansion.
- Provides new insights into SU(3) breaking.

New predictions for heavy baryon properties

- Relates heavy quark baryons to the nucleon
- Compute masses and pion couplings of the Λ_c , Λ_b , etc Results are in good agreement with experiment.
- Can combine $1/N_c$ and $1/m_Q$ expansions

New predictions for excited baryons

(Carlson, Carone, Goity, Schat, Lebed, Pirjol, Yan)

Nucleon Potential

- Explains the size of terms in the nucleon potential
- Gives Wigner supermultiplet symmetry in light nuclei

Large- N_c Baryons

$$\epsilon_{i_1 i_2 i_3 \cdots i_{N_c}} q^{i_1} q^{i_2} q^{i_3} \cdots q^{i_{N_c}}$$

bound state of N_c quarks completely antisymmetric in color

completely symmetric in the quarks, since Fermistatistics compensated by color antisymmetry.

N_c Counting Rules for Baryons

Baryon is made of N_c quarks.

- \blacksquare Baryon mass is order N_c
- Baryon size is order $\Lambda_{\rm QCD}^{-1}$ (order one)
- Baryon-meson coupling is $\leq \sqrt{N_c}$
- Each extra meson costs $1/\sqrt{N_c}$
- One-body matrix element $\langle B | \bar{q} \Gamma q | B \rangle \leq N_c$
- Two-body matrix element $(\bar{q} \Gamma q \bar{q} \Gamma q) \leq N_c^2$

Baryon-Meson Couplings

baryon-meson vertex $\sim O\left(\sqrt{N_c}\right)$

 $\otimes = \bar{q}q/\sqrt{N_c}$ creates a meson with unit amplitude

Baryon-Meson Scattering

baryon + meson \rightarrow baryon + meson $\sim O(1)$

$$N_c \left(\frac{1}{\sqrt{N_c}}\right)^2$$

$$N_c^2 \left(\frac{1}{\sqrt{N_c}}\right)^2 \left(\frac{1}{N_c}\right)$$

Baryon-Pion Scattering

- lacksquare $M_{
 m baryon} \sim O(N_c)$, so baryon acts as heavy static source
- Baryon propagator

$$\frac{i(P+M)}{P^2-M^2} \to \frac{i}{k \cdot v} \left(\frac{1+\psi}{2}\right) \to \frac{i}{E}$$

[Not only for pions. Argument is cleanest in this case.]

 $\blacksquare BB'\pi \text{ vertex } \sim O(\sqrt{N_c})$

$$\frac{\partial_{\mu}\pi^{a}}{f_{\pi}}\left(A^{\mu a}\right)_{B'B}$$

$$(A^{\mu a})_{B'B} = \langle B' | \bar{q} \gamma^{\mu} \gamma_5 \tau^a q | B \rangle \sim O(N_c)$$

 $lacksquare N_c o \infty$ limit

$$\frac{\partial^i \pi^a}{f_\pi} \left(A^{ia} \right)_{B'B}$$

$$A^{ia} \equiv gN_cX^{ia}$$

$$N_c \left[X^{ia}, X^{jb} \right] \le O(1)$$

$$X^{ia} = X_0^{ia} + \frac{1}{N_c} X_1^{ia} + \frac{1}{N_c^2} X_2^{ia} + \dots$$

$$\left[X_0^{ia}, X_0^{jb} \right] = 0$$

Spin-Flavor Symmetry

- Consistency conditions for scattering of low-energy pions with baryons at large- N_c leads to derivation of contracted spin-flavor symmetry for baryons
- Consistency of large- N_c power counting rules for baryon-meson scattering amplitudes and vertices leads to non-trivial constraints on $1/N_c$ corrections to large- N_c baryon matrix elements

Contracted Spin-Flavor Algebra

$$\left[J^i, I^a\right] = 0,$$

$$[J^i, J^j] = i\epsilon^{ijk}J^k, \qquad [I^a, I^b] = i\epsilon^{abc}I^c,$$

$$\begin{bmatrix} J^i, X_0^{ja} \end{bmatrix} = i\epsilon^{ijk} X_0^{ka}, \quad \begin{bmatrix} I^a, X_0^{ib} \end{bmatrix} = i\epsilon^{abc} X_0^{ic},$$

$$\left[X_0^{ia}, X_0^{jb}\right] = 0$$

Induced Representations

So the starting point is to work out the irreducible representations of the contracted symmetry, and then classify the $1/N_c$ corrections.

Standard theory of induced representations (e.g. Mackey) gives the Skyrme model.

Infinite dimensional unitary representations

Large- N_c Skyrme Model

lacksquare Simple understanding of spin-flavor generator X_0^{ia} as collective coordinate

$$X_0^{ia} = \operatorname{tr} A \tau^i A^{-1} \tau^a$$

Contracted spin-flavor symmetry for baryons in $N_c \to \infty$ limit realized exactly since

$$\left[X_0^{ia}, X_0^{bj}\right] = 0.$$

Quark Model

The SU(6) generators are

$$J^{i} = q^{\dagger} \frac{\sigma^{i}}{2} q$$

$$T^{a} = q^{\dagger} \frac{\tau^{a}}{2} q$$

$$G^{ia} = q^{\dagger} \frac{\sigma^{i} \tau^{a}}{2} q$$

with $\left[q,q^{\dagger}\right]=1.$

This gives

$$\begin{bmatrix} J^{i}, G^{jb} \end{bmatrix} = i\epsilon^{ijk} G^{kb}
\begin{bmatrix} I^{a}, G^{jb} \end{bmatrix} = i\epsilon^{abc} G^{jb}
\begin{bmatrix} G^{ia}, G^{jb} \end{bmatrix} = \frac{i}{4}\epsilon^{ijk}\delta^{ab} J^{k} + \frac{i}{4}\delta^{ij}\epsilon^{abc} T^{c}$$

Let

$$G^{ia} = N_c X^{ia},$$

and take the limit $N_c \to \infty$. This reduces to the QCD symmetry derived earlier.

$$N_F = 2$$

$$J = I = \frac{1}{2}, \ \frac{3}{2}, \ \frac{5}{2}, \ \cdots, \ \frac{N_c}{2}$$

$$N, \Delta, \dots$$

An infinite tower of degenerate states as $N_c \to \infty$.

Known that the Skyrme and Quark models were equivalent as $N_c \to \infty$. By explicit calculation, and by a trick.

$$J = \frac{1}{2}$$

$SU(3)_F$ rep

$$J = \frac{3}{2}$$

$SU(3)_F$ rep

$1/N_c$ CORRECTIONS

Feynman diagrams give multiple commutators

Baryon propagator

$$\frac{i}{E - \Delta M} \to \frac{i}{E} \left(1 + \frac{\Delta M}{E} + \cdots \right)$$

Expand the vertex in $1/N_c$

$$X = X_0 + \frac{1}{N_c} X_1 + \frac{1}{N_c^2} X_2 + \dots$$

Find

$$\left[X_0^{ia}, \left[X_0^{jb}, X_1^{kc} \right] \right] + \left[X_0^{ia}, \left[X_1^{jb}, X_0^{kc} \right] \right] = 0$$

$$\left[X_0^{ia}, \left[X_0^{jb}, \left[X_0^{jb}, \left[X_0^{kc}, \Delta M \right] \right] \right] = 0$$

Results (two flavors)

$$X_1 \propto X_0$$

$$\Delta M \propto \frac{J^2}{N_c}$$

$$X = X_0 + \frac{1}{N_c} X_1 + \frac{1}{N_c^2} X_2 + \dots$$

No $1/N_c$ corrections to ratio of pion couplings such as $g_{\pi NN}/g_{\pi N\Delta}$.

Pion Couplings

Explains why the Skyrme/Quark model predictions work well for the ratios, but not for the absolute values. The ratios are the same as in QCD to order $1/N_c^2$.

	Theory	Experiment
$g_{\pi N\Delta}$	13.2	20.3
$g_{\pi NN}$	8.9	13.5
$g_{\pi N\Delta}/g_{\pi NN}$	1.48	1.5

(From Adkins, Nappi, Witten)

Hyperfine Mass Splittings

The $1/N_c$ corrections are small only in a part of the irreducible representation.

Form of $1/N_c$ Expansion ($N_F=2$)

$$N_c^? \mathcal{P}\left(X_0^{ia}, \frac{J^i}{N_c}, \frac{I^a}{N_c}\right)$$

Or one can use

$$N_c^? \; \mathcal{P}\left(rac{G^{ia}}{N_c}, rac{J^i}{N_c}, rac{I^a}{N_c}
ight)$$

Two equivalent representations.

Form of $1/N_c$ Expansion ($N_F = 3$)

 $N_F = 3$ using isospin flavor symmetry only

$$N_c \mathcal{P}\left(X_0^{ia}, \frac{J^i}{N_c}, \frac{I^a}{N_c}, \frac{S}{N_c}\right)$$

where S is the strangeness. Thus $1/N_c$ constrains the form of SU(3) breaking.

n-body Quark Operators

$$\begin{array}{ll} \blacksquare \ \, \text{0-body:} & \ \, \mathbf{11} \\ \blacksquare \ \, \text{1-body:} & \ \, J^i = q^\dagger \left(\frac{\sigma^i}{2} \otimes \mathbf{11}\right) q \\ & \ \, I^a = q^\dagger \left(\mathbf{11} \otimes \frac{\tau^a}{2}\right) q \\ & \ \, G^{ia} = q^\dagger \left(\frac{\sigma^i}{2} \otimes \frac{\tau^a}{2}\right) q \\ & \ \, N_c = q^\dagger q \\ \blacksquare \ \, \text{2-body:} & \ \, \{J^i, G^{ja}\} \end{array}$$

$$G^{ia} = \sum_{\ell=1}^{N_c} q_\ell^\dagger \left(rac{\sigma^i}{2} \otimes rac{ au^a}{2}
ight) q_\ell, \qquad \qquad J^i I^a = \sum_{\ell,\ell'} \left(q_\ell^\dagger rac{\sigma^i}{2} q_\ell
ight) \ \left(q_{\ell'}^\dagger rac{ au^a}{2} q_{\ell'}
ight)$$

Note that commutators reduce n-body o (n-1)-body.

Operator Analysis

The general solution of the consistency conditions is to expand a given QCD quantity \mathcal{Q} as

$$Q = N_c^? \mathcal{P}\left(\frac{G^{ia}}{N_c}, \frac{J^i}{N_c}, \frac{T^a}{N_c}, \right)$$

where \mathcal{P} is a polynomial.

Agrees with the digrammatic analysis: each extra quark needs a gluon-exchange $\Rightarrow 1/N_c$

$SU(3)_F$

$$\langle T^a \rangle \sim \begin{cases} O(1) & \text{a=1,2,3} \\ O(\sqrt{N_c}) & \text{a=4,5,6,7} \\ O(N_c) & \text{a=8} \end{cases} \qquad \langle G^{ia} \rangle \sim \begin{cases} O(N_c) & \text{a=1,2,3} \\ O(\sqrt{N_c}) & \text{a=4,5,6,7} \\ O(1) & \text{a=8} \end{cases}$$

SU(6) Operator Identities

$2 \{J^{i}, J^{i}\} + 3 \{T^{a}, T^{a}\} + 12 \{G^{ia}, G^{ia}\} = 5N(N+6)$	(0,0)
$ d^{abc} \left\{ G^{ia}, G^{ib} \right\} + \frac{2}{3} \left\{ J^i, G^{ic} \right\} + \frac{1}{4} d^{abc} \left\{ T^a, T^b \right\} = \frac{2}{3} \left(N + 3 \right) T^c $	(0,8)
$\left\{T^a, G^{ia}\right\} = \frac{2}{3}\left(N+3\right) J^i$	(1,0)
	(1,8)
$-12 \left\{ G^{ia}, G^{ia} \right\} + 27 \left\{ T^a, T^a \right\} - 32 \left\{ J^i, J^i \right\} = 0$	(0, 0)
$d^{abc} \left\{ G^{ia}, G^{ib} \right\} + \frac{9}{4} d^{abc} \left\{ T^a, T^b \right\} - \frac{10}{3} \left\{ J^i, G^{ic} \right\} = 0$	(0,8)
$4 \left\{ G^{ia}, G^{ib} \right\} = \left\{ T^a, T^b \right\} \tag{27}$	(0, 27)
$\epsilon^{ijk} \left\{ J^i, G^{jc} \right\} = f^{abc} \left\{ T^a, G^{kb} \right\}$	(1,8)
$3 d^{abc} \{T^a, G^{kb}\} = \{J^k, T^c\} - \epsilon^{ijk} f^{abc} \{G^{ia}, G^{jb}\}$	(1,8)
$\epsilon^{ijk} \left\{ G^{ia}, G^{jb} \right\} = f^{acg} d^{bch} \left\{ T^g, G^{kh} \right\} \qquad (10 + \overline{10})$	$\left (1, 10 + \overline{10}) \right $
$3 \{G^{ia}, G^{ja}\} = \{J^i, J^j\} \qquad (J=2)$	(2,0)
$3 d^{abc} \{G^{ia}, G^{jb}\} = \{J^i, G^{jc}\} \qquad (J=2)$	(2,8)

Operator Reduction Rule $N_F = 3$

All operators in which two flavor indices are contracted using δ^{ab} , d^{abc} , or f^{abc} or two spin indices on G's are contracted using δ^{ij} or ϵ^{ijk} can be eliminated.

Baryon Masses

- \blacksquare Combined expansion in $1/N_c$ and SU(3) flavor symmetry breaking
- Flavor symmetry breaking expansion extends to 3^{rd} order in SU(3) breaking
- For $N_c=3$, only need to keep the expansion till 3-body operators

$$M = M^1 + M^8 + M^{27} + M^{64}$$

Jenkins & Lebed

Baryon Masses $N_F = 3$

$$M^{1} = N_{c} \mathbf{1} + \frac{1}{N_{c}} J^{2}$$

$$M^{8} = T^{8} + \frac{1}{N_{c}} \left\{ J^{i}, G^{i8} \right\} + \frac{1}{N_{c}^{2}} \left\{ J^{2}, T^{8} \right\}$$

$$M^{27} = \frac{1}{N_{c}} \left\{ T^{8}, T^{8} \right\} + \frac{1}{N_{c}^{2}} \left\{ T^{8}, \left\{ J^{i}, G^{i8} \right\} \right\}$$

$$M^{64} = \frac{1}{N_{c}^{2}} \left\{ T^{8}, \left\{ T^{8}, T^{8} \right\} \right\}$$

 $\blacksquare 8$ independent operators $\leftrightarrow 8$ masses:

$$N$$
, Λ , Σ , Ξ , Δ , Σ^* , Ξ^* , Ω

Baryon Mass Hierarchy $N_F=3$

- Unknown coefficient multiplies each operator: order in $1/N_c$ and in SU(3) flavor breaking predicted
- 8, 27, 64 operators are first, second, third order in SU(3) flavor breaking parameter $\epsilon \sim m_s/\Lambda_{\rm QCD} \sim 30\%$
- Order in $1/N_c$ given by explicit factor of $1/N_c$ times leading N_c -dependence of operator matrix element $\langle \mathcal{O} \rangle$

Baryon Mass Hierarchy $N_F = 3$

Each operator contributes to unique linear combination of masses

$$\frac{J^2}{N_c}$$
: $\frac{1}{8}(2N + \Lambda + 3\Sigma + 2\Xi) - \frac{1}{10}(4\Delta + 3\Sigma^* + 2\Xi^* + \Omega)$

Define dimensionless quantity

$$\frac{\sum B_i}{\sum |B_i|/2}$$

Theory: $1/N_c^2$

Expt:
$$(18.21 \pm 0.03)\%$$

Baryon Mass Hierarchy

Mass Splitting	$1/N_c$	Flavor	Expt.
$\frac{5}{8}(2N + 3\Sigma + \Lambda + 2\Xi) - \frac{1}{10}(4\Delta + 3\Sigma^* + 2\Xi^* + \Omega)$	N_c	1	*
$\frac{1}{8}(2N + 3\Sigma + \Lambda + 2\Xi) - \frac{1}{10}(4\Delta + 3\Sigma^* + 2\Xi^* + \Omega)$	$1/N_c$	1	$18.21 \pm 0.03\%$
$\frac{5}{2}(6N - 3\Sigma + \Lambda - 4\Xi) - (2\Delta - \Xi^* - \Omega)$	1	ϵ	$20.21 \pm 0.02\%$
$\frac{1}{4}(N-3\Sigma+\Lambda+\Xi)$	$1/N_c$	ϵ	$5.94 \pm 0.01\%$
$\frac{1}{2}(-2N - 9\Sigma + 3\Lambda + 8\Xi) + (2\Delta - \Xi^* - \Omega)$	$1/N_c^2$	ϵ	$1.11\pm0.02\%$
$\frac{5}{4}(2N - \Sigma - 3\Lambda + 2\Xi) - \frac{1}{7}(4\Delta - 5\Sigma^* - 2\Xi^* + 3\Omega)$	$1/N_c$	ϵ^2	$0.37\pm0.01\%$
$\frac{1}{2}(2N - \Sigma - 3\Lambda + 2\Xi) - \frac{1}{7}(4\Delta - 5\Sigma^* - 2\Xi^* + 3\Omega)$	$1/N_c^2$	ϵ^2	$0.17\pm0.02\%$
$\frac{1}{4}(\Delta - 3\Sigma^* + 3\Xi^* - \Omega)$	$1/N_c^2$	ϵ^3	$0.09 \pm 0.03\%$

(From Jenkins & Lebed)

Baryon Mass Hierarchy

$$\frac{1}{N_c^2} : \frac{\epsilon}{N_c} : \frac{\epsilon}{N_c^2} : \frac{\epsilon}{N_c^3} : \frac{\epsilon^2}{N_c^3} : \frac{\epsilon^2}{N_c^3} : \frac{\epsilon^3}{N_c^3}$$

Isospin Splittings

Jenkins and Lebed

Get relations that work to 0.1 MeV accuracy. Clear evidence for the 1/N hierarchy. Many relations cannot be tested because the baryon masses are not well-measured.

One prediction, that the Coleman-Glashow relation

$$(p-n) - (\Sigma^{+} - \Sigma^{-}) + (\Xi^{0} - \Xi^{-})$$

should work more accurately, because it is of order $\epsilon\epsilon'/N_c$ has been confirmed recently due to a more accurate measurement of the Ξ^0 mass.

Baryon Axial Vector Couplings

Octet (B) and Decuplet (T) baryons have an interaction

$$2D \operatorname{Tr} \bar{B}S^{\mu} \{ \mathcal{A}_{\mu}, B \} + 2F \operatorname{Tr} \bar{B}S^{\mu} [\mathcal{A}_{\mu}, B]$$
$$+C \left(\bar{T}^{\mu} \mathcal{A}_{\mu} B + \bar{B} \mathcal{A}_{\mu} T^{\mu} \right) + 2H \bar{T}^{\mu} S^{\nu} \mathcal{A}_{\nu} T_{\mu}$$

Large N_c predicts (to an accuracy $1/N_c^2$)

$$F/D = 2/3,$$
 $C = -2D,$ $H = -3F.$

which agrees with experimental fit using chiral perturbation theory.

A more detailed analysis including SU(3) breaking gives a good description of the data.

One result (to all orders in SU(3) breaking) is that the pion coupling has the form

$$g = N_c \left(A + B \frac{S}{N_c} + \dots \right)$$

$$g(\Sigma^* \to \Sigma \pi) - g(\Delta \to N\pi) = g(\Xi^* \to \Xi \pi) - g(\Sigma^* \to \Sigma \pi)$$
$$g(\Sigma^* \to \Sigma \pi) = g(\Sigma^* \to \Lambda \pi).$$

Isovector Magnetic Moments

	Isovector	$1/N_c$	Flavor	Expt.
V1	$(p-n) - 3(\Xi^0 - \Xi^-) = 2(\Sigma^+ - \Sigma^-)$	$1/N_c$	_	$10\pm2\%$
V2	$\Delta^{++} - \Delta^{-} = \frac{9}{5}(p-n)$	$1/N_c$	-	
V3	$\Lambda \Sigma^{*0} = -\sqrt{2}\Lambda \Sigma^0$	$1/N_c$	-	
V4	$\Sigma^{*+} - \Sigma^{*-} = \frac{3}{2}(\Sigma^{+} - \Sigma^{-})$	$1/N_c$	-	
V5	$\Xi^{*0} - \Xi^{*-} = -3(\Xi^0 - \Xi^-)$	$1/N_c$	_	
V6	$\sqrt{2}(\Sigma\Sigma^{*+} - \Sigma\Sigma^{*-}) = (\Sigma^{+} - \Sigma^{-})$	$1/N_c$	_	
V7	$\Xi\Xi^{*0} - \Xi\Xi^{*-} = -2\sqrt{2}(\Xi^0 - \Xi^-)$	$1/N_c$	_	
V8	$-2\Lambda\Sigma^0 = (\Sigma^+ - \Sigma^-)$	$1/N_c$	_	$11 \pm 5\%$
V9	$p\Delta^{+} + n\Delta^{0} = \sqrt{2}(p-n)$	$1/N_c$	_	$3\pm3\%$
V10 ₁	$(\Sigma^+ - \Sigma^-) = (p - n)$	1		$27\pm1\%$
V10 ₂	$(\Sigma^{+} - \Sigma^{-}) = \left(1 - \frac{1}{N_c}\right)(p - n)$	1	ϵ	$13 \pm 2\%$

Isoscalar Magnetic Moments

Isoscalar	$1/N_c$	Flavor	Expt.
$(p+n) - 3(\Xi^0 + \Xi^-) = -3\Lambda + \frac{3}{2}(\Sigma^+ + \Sigma^-) - \frac{4}{3}\Omega^-$	$1/N_c^2$	-	$4\pm5\%$
$\Delta^{++} + \Delta^{-} = 3(p+n)$	$1/N_c^2$	_	
$\frac{2}{3}(\Xi^{*0} + \Xi^{*-}) = \Lambda + \frac{3}{2}(\Sigma^{+} + \Sigma^{-}) - (p+n) + (\Xi^{0} + \Xi^{-})$	$1/N_c^2$	-	
$\Sigma^{*+} + \Sigma^{*-} = \frac{3}{2}(\Sigma^+ + \Sigma^-) + 3\Lambda$	$1/N_c^2$	-	
$\frac{3}{\sqrt{2}}(\Sigma \Sigma^{*+} + \Sigma \Sigma^{*-}) = 3(\Sigma^{+} + \Sigma^{-}) - (\Sigma^{*+} + \Sigma^{*-})$	$1/N_c^2$	-	
$\frac{3}{\sqrt{2}}(\Xi\Xi^{*0} + \Xi\Xi^{*-}) = -3(\Xi^{0} + \Xi^{-}) + (\Xi^{*0} + \Xi^{*-})$	$1/N_c^2$	-	
$5(p+n) - (\Xi^0 + \Xi^-) = 4(\Sigma^+ + \Sigma^-)$	$1/N_c$	-	$22\pm4\%$
$(p+n) - 3\Lambda = \frac{1}{2}(\Sigma^{+} + \Sigma^{-}) - (\Xi^{0} + \Xi^{-})$	$1/N_c$	ϵ	$7\pm1\%$

Additional Relations

Isoscalar/Isovector Relations	$1/N_c$	Flavor	Expt.
$(\Sigma^{+} + \Sigma^{-}) - \frac{1}{2}(\Xi^{0} + \Xi^{-}) = \frac{1}{2}(p+n) + 3\left(\frac{1}{N_{c}} - \frac{2}{N_{c}^{2}}\right)(p-n)$	1	ϵ	$10\pm3\%$
$\Delta^{++} = \frac{3}{2}(p+n) + \frac{9}{10}(p-n)$	$1/N_c^2$	_	$21\pm10\%$

$$\bigcirc = 1/N_c$$
, $\square = 1/N_c^2$, $\triangle = \epsilon/N_c$

$|\Delta \rightarrow N\gamma|$

(Jenkins, Ji, AM)

Two helicity amplitudes, and one finds

$$\frac{A_{3/2}}{A_{1/2}} = \sqrt{3} + \mathcal{O}\left(\frac{1}{N_c^2}\right)$$
$$= 1.73(1.89 \pm 0.10)$$

Equivalently,

$$\frac{E2}{M1} = \mathcal{O}\left(\frac{1}{N_c^2}\right)$$

$$= -0.025 \pm 0.005$$

Nucleon-Nucleon Potential

D.B. Kaplan & AM

$$V_{NN} = V_0^0 + V_\sigma^0 \sigma_1 \cdot \sigma_2 + V_{LS}^0 \mathbf{L} \cdot \mathbf{S} + V_T^0 S_{12} + V_Q^0 Q_{12}$$
$$+ (V_0^1 + V_\sigma^1 \sigma_1 \cdot \sigma_2 + V_{LS}^1 \mathbf{L} \cdot \mathbf{S} + V_T^1 S_{12} + V_Q^1 Q_{12}) \tau_1 \cdot \tau_2$$

where

$$S_{12} \equiv 3\sigma_1 \cdot \hat{\mathbf{r}} \ \sigma_2 \cdot \hat{\mathbf{r}} - \sigma_1 \cdot \sigma_2$$

 $Q_{12} = \frac{1}{2} \{ (\sigma_1 \cdot \mathbf{L}), (\sigma_2 \cdot \mathbf{L}) \}$

Isospin	V_0	V_{σ}	V_{LS}	V_T	V_Q
$1 \cdot 1$	N_c	$1/N_c$	$1/N_c$	$1/N_c$	$1/N_c^3$
$\mid \tau_{1} \cdot \tau_{2} \mid$	$1/N_c$	N_c	$1/N_c$	N_c	$1/N_c$

The potential in the large N_c limit has Wigner supermultiplet symmetry under which the $p \uparrow p \downarrow$, $n \uparrow$, $n \downarrow$ transform as a 4 of SU(4).

Fit to parameters in the Nijmegen potential

I=J Rule

Mattis, Braaten

Mattis' I=J Rule and its generalization: Couplings are of order $N^{1-|I-J|/2}$.

e.g the ρ is I=1, so the dominant ρ coupling is J=1, i.e. magnetic moment-like $(F_2$ form factor). The ω has I=0, and its dominant coupling is J=0, i.e. charge-like (F_1) .

For the ρ , $F_2/F_1 \sim 3$ For the ω , $F_1/F_2 \sim 3$.

Heavy Baryons

Jenkins

Form a $\overline{\bf 3}$ Λ_Q and Ξ_Q and a ${\bf 6}$, Σ_Q , Ξ_Q' , Ω_Q (and their spin-3/2 partners).

Heavy-quark hyperfine splittings $(\Sigma_Q^* - \Sigma_Q)$ are 150 MeV for the c, and 60 MeV for the b

Light-quark hyperfine splittings $(\Xi_Q' - \Xi_Q)$ are 150 MeV.

In this case, results before the measurements.

- Can relate the pion couplings of heavy baryons to those of the p up to corrections of order $1/N_c$ (rather than $1/N_c^2$).
- Obtain mass relations for heavy baryons, e.g.

$$\frac{1}{3}\left(\Sigma_Q + \Sigma_Q^*\right) = \frac{2}{3}\left(\Delta - N\right) + \mathcal{O}\left(\frac{1}{N_c^2}\right)$$

- The Ξ_c' mass was predicted to be 2580 ± 2.1 MeV before the measurement of 2576.5 ± 2.3 MeV.
- Predictions for other c baryon masses, and all the b baryon masses in terms of the Λ_b mass.

Conclusions

- $1/N_c$ expansion useful and predictive for QCD baryons, and most of the spin-flavor structure of baryons can be understood using the $1/N_c$ expansion.
- $lacksquare 1/N_c$ hierarchy evident in baryon masses, axial couplings and magnetic moments
- Intricate pattern of spin-flavor breaking since $1/N_c$ and SU(3) breaking comparable. Restricts the form of SU(3) breaking, and so is important in understanding baryon chiral perturbation theory
- Provides a unifying symmetry that connects QCD with various models such as the quark and Skyrme model.